sábado, 23 de setembro de 2017

Buracos Negros - Um enigma colossal

Como se formaram os buracos negros?

Imensos sorvedouros cósmicos que engolem tudo o que encontram pelo caminho, os buracos negros ainda ocultam inúmeros mistérios no seu interior. Esta é a sua história.

Há 100 milhões de anos, três estrelas ligadas entre si por ondas gravitacionais viajavam pelo cálido centro da nossa galáxia. Nessa altura, aconteceu algo que mudou para sempre o seu destino: o sistema triplo passou demasiado perto do enorme buraco negro que ocupa o centro da Via Láctea. O monstro cósmico capturou uma das estrelas e lançou as outras duas a mais de 2,5 milhões de quilómetros por hora, isto é, a uma velocidade três vezes maior do que aquela a que o Sol viaja em redor do centro da Via Láctea e duas vezes superior à velocidade da nossa galáxia. No caminho, os dois astros fundiram-se e deram origem a uma abrasadora estrela azul que ainda hoje, já longe da nossa grande cidade cósmica, se distancia à velocidade de um enfarte fulminante.

Isto é o que os astrónomos supõem que se passou com o objecto designado por “HE 0437-5439”, um dos mais velozes jamais detectados. Desde 2005, já foram descobertos 16 destes astros à Speedy Gonzalez, exilados à força da nossa galáxia: a teoria defende que o gigantesco buraco negro central expulse uma estrela para o espaço intergaláctico a cada cem mil anos. Todavia, aquilo que torna este caso especial é que foi possível estabelecer, em Junho passado, a sua trajectória, a qual parte, precisamente, do centro da Via Láctea.

Curiosamente, um mês antes, a revista Month­ly Notices of the Royal Astronomical Society anunciava que fora possível, graças ao telescópio espacial Chandra, de raios X, observar o que poderá ser um buraco negro de grande massa expulso da sua galáxia. Segundo a autora da descoberta, Marianne Heida, da Universidade de Utrecht (Países Baixos), existe a possibilidade de estarmos diante de um caso semelhante, só que desta vez a união se registava entre dois buracos negros.

Os mistérios que rodeiam os invisíveis objectos celestes são inúmeros, mas os astrónomos consideram que vão conseguir encontrar resposta para muitos dentro de uma década, com o lançamento do maior telescópio de raios X desenvolvido até agora: o IXO, concebido em conjunto pela ESA, pela NASA e pela JAXA (a agência espacial nipónica). Entretanto, o trabalho preparatório fica a cargo do eROSITA, uma sonda russa e alemã que será lançada no espaço já em 2012. O objectivo é procurar buracos negros de grande massa que se formaram quando o universo era jovem, antes do aparecimento das primeiras estrelas. Os astrónomos esperam localizar cerca de três milhões, o que irá seguramente lançar luz sobre um dos maiores mistérios da astronomia moderna: como surgiram semelhantes objectos, cuja massa equivale a vários milhões de sóis?

Incógnitas a desvendar

Além desses colossos situados no centro das galáxias, há outros bastante mais pequenos, com apenas algumas dezenas de vezes a massa do Sol. Destes, em contrapartida, conhecemos a origem: quando uma estrela de grande massa (mais de 20 massas solares) chega ao fim dos seus dias, transforma-se numa supernova e explode; adquire tanto brilho como todas as estrelas da galáxia juntas. Por detrás da supernova, fica um buraco negro.

Claro que as coisas nem sempre acontecem do mesmo modo. Em Agosto de 2010, uma equipa de astrónomos europeus descobria, no cúmulo Westerlund 1, situado a 16 mil anos-luz, a CXO J164710.2-455216, uma estrela de neutrões com um campo magnético extraordinariamente intenso (um milhão de milhões de vezes superior ao da Terra). Era o que restava de uma estrela que tinha 40 vezes a massa solar, embora a teoria estipule que não devia ter acontecido: o seu destino era transformar-se num buraco negro. A única explicação aceitável é que deve ter partilhado a existência com uma estrela-companheira que se dedicou a roubar-lhe grande quantidade de matéria. No final, a explosão da supernova projectou-a para longe. Tal como afirmou o principal responsável pelo estudo, Simon Clark, “trata-se do grande programa dietético para estrelas extragordas, pois elimina mais de 95 por cento da massa inicial”.

Vagabundos e vândalos

Existe ainda um terceiro tipo de buracos negros, também conhecidos por “vagabundos”. Segundo os astrónomos Ryan O’Leary e Avi Loeb, do Harvard-Smithsonian Center for Astrophysics, há centenas deles a errar pela nossa galáxia e apostados em arrasar tudo o que encontram pelo caminho. Felizmente para nós, o mais próximo está a vários milhares de anos-luz. Com uma massa que poderá alcançar entre mil e cem mil sóis, os “vagabundos” movimentam-se pelos bairros mais periféricos do centro da Via Láctea. São autênticos vestígios de um passado remoto, quando a nossa galáxia se formou a partir de uniões e colisões de outras menores, num processo que pode ter-se prolongado por milhares de milhões de anos. Quando duas protogaláxias se fundiam, os seus buracos negros faziam o mesmo, dando origem às relíquias que hoje podemos observar. O seu estudo irá proporcionar-nos muita informação sobre o que aconteceu e constitui um verdadeiro desafio para os astrónomos, pois são difíceis de observar: só se tornam visíveis quando capturam (acrescentam) matéria interestelar que se aproxima.

Por sua vez, os físicos teóricos encontram nos buracos negros uma fonte quase inesgotável de possibilidades para desenvolver as noções mais extravagantes. Por exemplo, na edição de Outubro da revista Physics Letters B, o físico polaco Nikodem Poplawski explica o modo como todo um universo pode existir dentro de um buraco negro. Baseou-se, para isso, numa versão da teoria que prevê a existência dos buracos negros, a relatividade geral de Albert Einstein. Conhecida como “teo­ria da gravidade de Einstein-Cartan-Kibble-Sciama”, introduz nas primitivas equações do génio alemão uma propriedade das partículas sub­atómicas designada por spin: implica, essencialmente, admitir que as partículas rodam sobre si mesmas, como a Terra.

A teoria estabelece que, ao fazê-lo, consegue deter-se o colapso gravitacional que dá origem ao buraco negro e forma-se um novo espaço-tempo no seu interior. Deste modo, surge um novo universo-filho ligado ao universo-pai através de um cordão umbilical designado por “ponte de Einstein-Rosen” ou “buraco de verme”. A passagem da matéria através do buraco é feita apenas num sentido, não em ambas as direcções. Na opinião de Poplawski, o facto explica um dos enigmas mais extraordinários do universo: os gamma-ray bursts (GRB, na sigla inglesa), as explosões mais violentas do cosmos, apenas ultrapassadas pelo Big Bang.

Dimensão desconhecida

De acordo com este físico teórico, os GRB seriam descargas de matérias provenientes de cosmos ligados ao nosso através dos referidos buracos de verme. “Parece uma ideia louca, mas quem sabe?”, interroga. Contudo, que o nosso universo seja o interior de um buraco negro existente noutro universo não é uma ideia nova. Porém, como assinala Damien Easson, outro físico teórico da Universidade do Estado do Arizona, “a novidade é que ele encontrou uma solução real, um buraco de verme que funciona como passagem do exterior de um buraco negro para o interior de um universo”.

Como se isto fosse pouco, os buracos negros também podem ajudar a demonstrar se existem mais dimensões espaciais para além das quatro conhecidas: três espaciais (altura, largura e comprimento) e o tempo. De facto, os físicos teóricos defendem que podemos estar a viver num mundo com dez dimensões, seis das quais estão ocultas. Em Fevereiro passado, durante uma reunião da American Physical Society, Amitai Bin-Nun, uma astrofísica da Universidade da Pensilvânia, propôs uma forma de comprovar se o nosso universo possui mesmo essas dimensões suplementares. Assim, simulou em computador o modo como se alteraria o brilho de uma estrela que passasse suficientemente perto do enorme buraco negro que se encontra no centro da galáxia.

Os resultados mostram que a transformação no brilho da estrela ao longo de dez anos, devido ao efeito da gravidade do buraco negro, depende do número de dimensões do nosso universo: durante a época de maior brilho, a estrela irá parecer 44% mais resplandecente se tiver cinco dimensões do que se tiver quatro. Infelizmente, é impossível confirmar por enquanto as ideias de Bin-Nun, mas ela acredita que poderá fazê-lo já na próxima década, quando entrar em funcionamento o ELT (sigla inglesa de Telescópio Extremamente Grande), com um espelho de 42 metros.

Como é o espaço em que vivemos?

A teoria geral da relatividade que Albert Einstein apresentou ao mundo, em 1915, explicava o que é a gravidade: um efeito da existência da matéria (e da energia) no universo, de modo que a sua presença modifica a estrutura do espaço-tempo. Podemos visualizar o fenómeno se imaginarmos que o cosmos é como uma cama elástica. Se não houver nada em cima dela (matéria), a sua forma (geo­metria) é totalmente plana, sem deformações. Porém, se colocarmos uma esfera de ferro maciço (uma estrela), a superfície fica deformada devido à presença de uma massa. Ao lançarmos um berlinde (um planeta, uma sonda espacial), veremos que se desloca em linha recta até encontrar a deformação criada pela esfera. Nessa altura, cairá na sua direcção, ou descreverá uma trajectória curva em seu redor, orbitando em torno da massa central. É óbvio que quanto maior for a massa de uma estrela maior será a deformação ou distorção do espaço-tempo e, por conseguinte, maior será a força da gravidade. Será que a deformação se pode forçar ao máximo? Sim: é um buraco negro, uma depressão cavada na tela do nosso espaço-tempo.


M.A.S.
SUPER 152 

quinta-feira, 21 de setembro de 2017

Uma nova Via Láctea




A Via Láctea está repleta de enigmas fascinantes relativamente à sua origem, à sua evolução e ao seu destino final. Três astrofísicas guiam-nos numa viagem ao centro do nosso bairro cósmico.

Daniela Carollo lembra-se perfeitamente do momento em que sentiu que queria ser astrónoma. “Estava numa pequena aldeia perto de Turim, no Norte de Itália, pelo que se via bastante bem o céu nocturno; era belíssimo”, recorda, na entrevista telefónica que nos concedeu a partir da sua actual casa, do outro lado do planeta, não muito longe do Observatório de Monte Stromlo, próximo de Camberra (Austrália). “Na casa dos meus pais, havia uma varanda de onde podia contemplar as estrelas, e eu tinha um monte de interrogações na minha cabeça; queria explicações para muita coisa.” Daniela tinha, na altura, nove anos. Agora, aos 40, cumpre o seu sonho na Universidade Nacional da Austrália, uma das mais avançadas em matéria de investigação astronómica, enquanto segue a pista das estrelas mais antigas do Universo.

Não podia imaginar que, por aquela altura, nascia na Alemanha uma menina que seguiria o seu exemplo e dedicaria a vida a procurar as mesmas respostas. Chama-se Anna Frebel e explica, também por telefone, a partir do Instituto Astrofísico de Harvard (outro dos “monstros sagrados” no estudo do Cosmos) que “sempre quis ser astrónoma”: “O meu trabalho consiste em procurar velhas estrelas. Podem perfeitamente chamar-me ‘caçadora de fósseis cósmicos’.”

Anna, de 30 anos, adora a cor azul, que associa à astronomia. Não tinha acesso a um telescópio quando era pequena, mas ficava fascinada com os programas e livros sobre o universo. Em Göttingen, a sua cidade natal na Baixa Saxónia, não é fácil contemplar as estrelas, devido à poluição luminosa, mas isso não a desencorajou de estudar astrofísica nem de obter o doutoramento no Observatório de Monte Stromlo.

Quem conseguiu, efectivamente, um telescópio pelo seu aniversário foi Beatriz Barbuy, uma brasileira irremediavelmente atraída pelo Cosmos desde os 16 anos. Actualmente, dedica-se à investigação no Instituto Astronómico da Universidade de São Paulo, onde tem sido responsável, tal como as duas colegas já citadas, por contributos inovadores que estão a revolucionar o que se pensava sobre a Via Láctea. 
As três procuram explicações para a origem desta grande galáxia capaz de albergar os seres humanos, um mistério que mantém intrigados astrofísicos e filósofos. Será possível averiguar como se formou? Parece uma missão impossível.

A Via Láctea é uma galáxia em espiral de componentes essenciais complexos e três partes bem diferenciadas: o centro, ou bulbo, o disco e o halo. O centro é o lugar mais povoado de estrelas e com maior actividade energética, pois contém fontes extremamente potentes de raios X e gama e, segundo pensam os especialistas, alberga provavelmente um buraco negro massivo.

O disco galáctico surge como uma estrutura plana de rotação, feita de poeira e hidrogénio molecular e atómico. É aqui que se encontra o Sistema Solar, a cerca de dois terços do centro galáctico e um terço (cerca de 25 mil anos-luz) da extremidade do disco. O Sol dá uma volta completa à Via Láctea a cada 250 milhões de anos. É também no disco que se situam os braços da espiral, cuja estrutura definitiva conhecemos graças ao telescópio espacial Spitzer. Por fim, o halo é a parte exterior da galáxia, uma forma esférica de gás difuso que abriga as estrelas mais antigas (incluindo 146 cúmulos globulares) e a que mais tem chamado a atenção das nossas três astrónomas, pois contém pistas que poderiam explicar como nasceu a Via Láctea.

Para isso, é preciso começar por distinguir o velho do novo, o que não é possível através de uma simples observação por telescópio. Anna Frebel investiu muito tempo a aperfeiçoar os seus instrumentos a fim de poder farejar as relíquias estelares mais idosas. “Não podemos determinar directamente a idade das estrelas, pelo que temos de recorrer a outros métodos, que consistem em conhecer os seus elementos químicos”, explica a especialista. A composição química de uma estrela varia consoante a geração a que pertença: quanto mais antiga for, mais baixo será o conteúdo em metais.

No início da sua existência, um astro semelhante ao Sol contém, aproximadamente, 75 por cento de hidrogénio e 23% de hélio. O restante é formado por elementos mais pesados (metais como o ferro), fornecidos por estrelas que terminaram antes o seu ciclo. Deste modo, se imaginarmos o nascimento do Universo por ocasião do Big Bang, há 13.700 milhões de anos, “todos os elementos pesados (à excepção do hidrogénio e do hélio), como o oxigénio, o carbono, o ferro... foram criados posteriormente durante as explosões estelares de supernovas”, indica Anna Frebel.

Somos, literalmente, pó de estrelas. É nesse cenário conceptual (um universo que apenas continha hidrogénio e hélio, pois os restantes elementos da tabela periódica surgiriam mais tarde), que a pesquisa começa a fazer sentido. “O que fazemos é procurar as estrelas que têm muito pouca quantidade de elementos pesados, pois esse facto indica que se formaram numa fase muito precoce do Cosmos, quando esses materiais ainda eram escassos.”

Por vezes, o trabalho dos astrofísicos é semelhante a procurar uma agulha num palheiro, mas, nos últimos dez anos, os rastreios estelares em grande escala generalizaram-se, o que lhes permite sondar com maior rapidez a zona do halo galáctico que engloba os antigos astros. “As primeiras estrelas da Via Láctea são tão velhas como o próprio Universo. Estamos a falar de uma idade que pode oscilar entre os dez e os 13 mil milhões de anos. Algumas nasceram antes de a galáxia se formar”, explica Daniela Carollo, que fica sempre maravilhada com a relação entre a nucleossíntese e a vida: “Sem essa síntese de elementos pesados no coração das estrelas, não estaríamos agora a conversar.”

Seja como for, os metais, eternamente minoritários, constituem um elemento de transformação muito significativo, apesar da sua escassez em termos cósmicos. No início, havia tão poucos que os partos estelares se produziam num ambiente quase primitivo. Com a passagem dos éons e a morte de mais estrelas, as consequentes explosões contaminaram vastas zonas da galáxia com novos elementos, e as estrelas nascidas posteriormente surgiram num meio mais metalizado. Ao comparar essas relíquias estelares com o Sol, comprovamos que a nossa estrela é relativamente jovem (nasceu há 4500 milhões de anos), embora tenha evoluído até alcançar a plena maturidade na meia-idade, explica Anna Frebel: “Se se extraísse todo o ferro solar para o colocar ao lado do que as estrelas que ando a procurar contêm, estas só teriam entre um milésimo e um décimo-milésimo do do Sol.”

Entre os tesouros que Anna Frebel conseguiu localizar encontra-se a estrela gigante vermelha S1020549, situada na galáxia do Escultor. A astrofísica desenvolveu uma técnica para determinar as quantidades relativas de tório e urânio no núcleo do astro, e publicou a descoberta na revista Nature: “Pensamos que procede de uma supernova anterior. Neste caso, tal como os arqueólogos recorrem ao carbono-14 para datar os seus fósseis, podemos analisar a relação urânio-tório para avaliar a idade da S1020549.”

A técnica envolve deduzir a proporção daqueles elementos radioactivos que resta no interior do astro e compará-la com as quantidades libertadas na explosão estelar que precedeu o seu nascimento. Como possuem uma existência muito longa, o tório e o urânio funcionam como um relógio para os astrofísicos. A S1020549 é espantosamente velha, talvez um dos objectos mais antigos de todo o Universo; poderá ter cerca de 13 mil milhões de anos (ou seja, é menos de mil milhões de anos mais jovem do que o Big Bang). A especialista alemã acredita que “provavelmente, ainda irá viver muito tempo, embora se encontre numa fase terminal, e finalizará a existência na qualidade de anã branca”.

A pesquisa de fósseis cósmicos e o aperfeiçoamento de técnicas para encontrá-los são também o leitmotiv da investigação desenvolvida por Beatriz Barbuy. Depois de obter o doutoramento pela Universidade de Paris, a cientista brasileira dedicou-se ao estudo das possibilidades da espectroscopia para detectar estrelas pobres em metais. Descobriu, entre outras coisas, que esses objectos celestes continham uma grande proporção de oxigénio relativamente à percentagem de ferro, e propôs-se averiguar de onde o obtinham.

Uma das conclusões a que chegou, publicada na revista Science, é que os astros com oxigénio devem ter nascido de resíduos deixados por supernovas de tipo II, ou seja, as que alcançaram o equilíbrio com um núcleo denso de ferro e níquel. Esses elementos já não podem fundir-se para fornecer mais energia, pelo que a aproveitam para se transformar noutros elementos mais pesados. Quando a estrela possui dez vezes a massa do Sol, pode consumir rapidamente o hidrogénio, por vezes em apenas 35 milhões de anos, e as sucessivas reacções de fusão vão produzindo elementos mais pesados. A estrela que resulta concentra-os no centro, enquanto os mais leves se acumulam no exterior, como as camadas de uma cebola. O colapso final do núcleo de ferro demora segundos; a onda de choque produz uma gigantesca explosão que expulsa as camadas mais periféricas do astro moribundo para o exterior a uma velocidade de mais de 15 mil quilómetros por segundo. A supernova pode emitir uma luz dez mil milhões de vezes mais intensa do que a do astro-rei; com efeito, rivaliza com o brilho de uma galáxia inteira durante semanas.

Por ter uma existência tão breve em comparação com outros vizinhos estelares, as supernovas de tipo II surgiram, provavelmente, nas etapas mais primitivas da Via Láctea. A impressão digital do ferro-oxigénio denuncia as “rugas” de estrelas que nasceram depois dessas explosões, algo que Beatriz Barbuy pode avaliar através dos telescópios gigantes do Observatório Austral Europeu, no Chile. Na década passada, dedicou-se à localização de cúmulos globulares de estrelas numa zona de difícil visualização, o óvalo central do núcleo galáctico. Alguns cúmulos têm dez mil milhões de anos, o que significa que a região nasceu nas fases primordiais do Universo.

Qual o contributo das três astrónomas para o estudo global sobre a origem da nossa galáxia? Há trinta anos, duas teorias competiam entre si para tentar explicá-la. “Uma fala do colapso monolítico de uma enorme nuvem de gás, semelhante ao que as estrelas sofrem, mas numa escala maior”, explica Anna Frebel. Todavia, essa perspectiva começa a ser considerada ultrapassada. A outra hipótese possui um certo sabor darwiniano: fala da sobrevivência do mais apto e começa pela criação de uma “pequena galáxia que se formou a partir do colapso de uma nuvem” e que principiaria, algum tempo depois, a atrair outras mais pequenas, naquilo que a especialista descreve como um processo de “canibalismo cósmico”. Assim, a estrutura inicial cresceria “devorando cada vez mais gás, estrelas e mesmo outras galáxias até adquirir, finalmente, o tamanho da Via Láctea”. A nossa galáxia resultaria, pois, de um banquete cósmico.

As “estrelas Matusalém”, que são quase tão velhas como o Universo, não se teriam formado na galáxia, pois esta não existia quando nasceram, há quase 13 mil milhões de anos. Naquela época, a Via Láctea era muito mais difusa e não teria, evidentemente, o rosto que hoje exibe. “É muito provável que essas estrelas mais velhas tenham surgido em galáxias mais pequenas que foram, posteriormente, canibalizadas pela nossa”, assegura Anna Frebel.

Se pudéssemos viajar para trás no tempo, o que observaríamos, de acordo com Daniela Carollo, não seria a Via Láctea, mas as velhas estrelas que nasceram antes. “Ainda não se veria a galáxia, apenas pequenos halos galácticos ou nuvens feitas de matéria escura e poei­ra. Foi nesses mini-halos que se formaram as primeiras estrelas. Durante a sua evolução, contaminaram o meio estelar. Quando se formou a segunda geração de estrelas, a galáxia ainda não se tinha unido.”

Os fragmentos da Via Láctea que contêm esses astros veteranos também carregam a marca do seu momento angular. É como se fosse outra impressão digital. Nas observações que efectuou sobre o halo galáctico, a astrónoma italiana descobriu que as estrelas mais ricas em metais e, por conseguinte, mais jovens, giram em redor do centro no sentido dos ponteiros do relógio e ficam situadas nas zonas interiores do halo. Em contrapartida, as mais pobres em metais e, consequentemente, mais idosas, fazem-no em sentido contrário e situam-se nas regiões periféricas do halo.

Esta análise coincide com as considerações de Anna Frebel: “Quanto mais remotos, mais primitivos são os corpos celestes que se descobrem.” É provável que a parte central da Via Láctea tenha sido a primeira a sofrer processos de acreção (crescimento por justaposição de matéria), enquanto as regiões exteriores foram posteriormente incorporadas. “Essas estrelas tão velhas foram, provavelmente, acrescentadas há não muito tempo à galáxia.” Anna não rejeita a hipótese de encontrar astros muito primitivos no centro galáctico, mas, como afirma, a “densidade do palheiro é muito elevada e ainda temos limitações técnicas”.

Por sua vez, Daniela Carollo sugere que nos deixemos maravilhar pela actual complexidade da Via Láctea, com o seu disco galáctico, o bulbo central, os halos e a matéria escura. Sublinha que o conteúdo metálico das velhas estrelas na parte exterior do halo é quatro vezes menor do que o daquelas que se encontram nas zonas interiores da esfera de gás. Além disso, são escassas e difíceis de detectar, pois encontram-se a grande distância do disco central, onde a maior parte se concentra, pelo que estão apenas ao alcance de telescópios gigantes com mais de oito metros de diâmetro.

A situação é paradoxal: o mais provável é que o bulbo (ou centro) esconda os primeiros astros que se formaram (entre uma população extremamente numerosa de estrelas muito mais jovens), mas, como se trata de um lugar de enorme densidade, a pesquisa é árdua. Os telescópios têm maiores possibilidades de descobrir objectos antigos no halo, em zonas mais desabitadas. Todavia, a teoria do canibalismo (acrescentar galáxias menores para formar uma maior) adquire cada vez mais força, segundo Daniela Carollo. Pensemos, pois, em termos de estruturas quase vivas de um ­puzzle que se vão juntando à medida que os éons passam. É como se a Via Láctea fosse feita de pedaços atigos e outros mais recentes; como se cada peça fosse composta de galáxias mais pequenas. “Neste momento, pensamos que a parte interna se formou através da união de nuvens galácticas, cuja massa era muito maior, e que isso também se verificou no disco e na parte interior do halo.”

Actualmente, há várias galáxias anãs em redor da nossa Via Láctea; algumas são tão pequenas que possuem apenas, de acordo com Daniela Carollo, dez mil vezes a massa do Sol. Provavelmente, explica a investigadora italiana, constituem os resíduos do mini-halo que formou a extremidade do halo da própria Via Láctea. Por outras palavras, seriam os restos do festim. “Hoje, podemos mesmo observar em directo a forma como se juntam as estruturas cósmicas. A galáxia anã de Sagitário está actualmente a unir-se à Via Láctea”, o que significa que os casamentos intergalácticos continuam a produzir-se nos nossos dias.

Outro facto interessante, indica Anna Frebel, é que as estrelas antigas das galáxias anãs são do mesmo tipo das que existem no perímetro do halo da Via Láctea. Ou seja, conclui, é como “se fossem gémeos idênticos separados, o que nos leva a pensar que o halo exterior do nosso bairro celeste se formou através da acreção dessas galáxias liliputianas”.

Otelescópio espacial Fermi, da NASA, especializado na observação de raios gama, detectou uma misteriosa estrutura gigantesca nunca vista na nossa galáxia. Trata-se de duas bolhas quase simétricas que se estendem por cerca de 25 anos-luz  a partir do centro galáctico, uma para Norte e a outra para Sul. O astrónomo Doug Finkbeiner, do Centro Harvard-Smithsonian, afirma: “Ainda não entendemos por completo a sua natureza e origem, mas pensamos que as bolhas podem ter surgido devido a uma súbita explosão de formação estelar ocorrida perto do centro da Via Láctea.” Outra possibilidade adiantada pelos astrofísicos é que as bolhas “tenham sido criadas por uma erupção do buraco negro supermassivo Sgr A* há vários milhões de anos, como um remanescente daquele despertar que apenas se tornou visível agora”.


L.M.A. - SUPER 153 - Janeiro 2011

terça-feira, 19 de setembro de 2017

ESA - Huygens

A sonda Cassini-Huygens é um projecto colaborativo entre a ESA e a NASA para estudar Saturno e as suas luas através de uma missão espacial não tripulada.

domingo, 17 de setembro de 2017

Astrónomos americanos identificam aquela que pode ser a galáxia mais distante entre 7 novas galáxias primitivas agora descobertas


Uma equipa de astrónomos liderada por Richard Ellis, do California Institute of Technology, descobriu um conjunto de 7 novas galáxias formadas pouco depois da origem do universo, entre as quais identificou aquela que pode ser a galáxia mais longínqua, que se terá formado 380 milhões de anos após o Big Bang (há 13,7 mil milhões de anos atrás).

A descoberta aconteceu no âmbito do censo de 2012 de uma área do céu muito estudada denominada Ultra Deep Field (UDF12), utilizando a Wide Field Camera 3 do telescópio espacial Hubble (NASA) e usando luz com comprimento de onda próximo do da radiação infravermelha.

No seu site, a NASA explica que o recurso à radiação próxima da infravermelha para estudar o universo distante se deve ao facto da expansão do Espaço esticar a luz ultravioleta e a luz visível das galáxias para comprimentos de onda no intervalo dos infravermelhos, um fenómeno denominado redshift (quanto mais distante for a galáxia, maior o seu redshift).

“A maior profundidade das novas imagens do Hubble”, obtidas em agosto e setembro, “em conjunto com uma estratégia de inspeção cuidadosamente delineada” fez com que se obtivesse “o primeiro censo fiável” da época que se seguiu à origem do universo, pode ler-se na notícia publicada no site da NASA.

Os resultados deste censo, que foram aceites para publicação na revista Astrophysical Journal Letters, evidenciam um declínio suave do número de galáxias à medida que se analisa o passado até 450 milhões anos depois do Big Bang. “As observações”, escreve a NASA, “apoiam a ideia que as galáxias se formaram continuamente ao longo do tempo e podem ter disponibilizado radiação suficiente para reaquecer, ou re-inozar, o universo”.

A re-ionização do universo, que se estima ter acontecido há 200-1.000 milhões de anos, envolveu o aquecimento do hidrogénio formado pouco tempo após o Big Bang e tornou o universo transparente à luz, sendo há muito discutido se as galáxias poderiam ter sido responsáveis por este fenómeno.

“Os nossos dados confirmam que a re-ionização foi um processo gradual, que ocorreu ao longo de várias centenas de milhões de anos, com as galáxias a acumularem as suas estrelas e os seus elementos químicos de forma lenta. Não houve um único momento intenso quando as galáxias se formaram. Foi um processo gradual”, explica Brant Robertson da Universidade do Arizona.

Fonte: Filipa Alves/www.nasa.gov

sexta-feira, 15 de setembro de 2017

NASA quer caçar cometas com arpões

A agência espacial norte-americana NASA está a preparar um sistema que permita capturar e trazer para a Terra amostras do núcleo de cometas utilizando um arpão especial.O sistema - que está actualmente a ser testado em laboratório - prevê a utilização de um arpão que, lançado de uma sonda espacial, se prenda ao núcleo do cometa e depois seja capaz de capturar uma amostra do material, que será depois transportado de volta à Terra para ser analisado.
Aterrar um aparelho na superfície de um cometa revela-se muito complicado, dado esta ser essencialmente composta por pó e gelo - que se derrete quando o corpo celeste passa próximo do Sol (o que forma a 'cauda', soprada pelo vento solar, que estamos habituados a associar a estes objectos).
A melhor solução, defendem os cientistas do Goddard Space Flight Center, é usar um arpão para prender uma sonda ao corpo celeste.
Os cometas são dos objectos mais antigos do sistema solar, alguns datando mesmo da época da sua formação. O seu estudo é assim considerado essencial para melhor compreender como se formaram o Sol e os os planetas que o rodeiam, incluindo a Terra.


quarta-feira, 13 de setembro de 2017

Finalmente está provado que Mercúrio tem água


As pistas e indícios da existência de água no planeta mais próximo do Sol acumulavam-se, mas a sonda Messenger finalmente provou que existe mesmo água em Mercúrio.

As primeiras pistas da existência de água em Mercúrio foram obtidas por sinais de rádio há duas décadas atrás. A sonda Messenger depois de lançada rapidamente detectou indícios da existência de água e agora confirmou finalmente que as pistas estavam certas. Mercúrio tem água gelada no seu pólo Norte!

A comunidade científica pode agora afirmar que o planeta Mercúrio alberga toneladas de água gelada. Esta água encontra-se depositada em crateras com sombra constante e grande parte desta água gelada encontra-se por baixo de uma camada de material negro rico em moléculas voláteis.

Fonte: Nuno Leitão / BBC

segunda-feira, 11 de setembro de 2017

ESA - Venus Express

A ESA chega a Vénus com a sua primeira missão, a Venus Express. Enviada para ser colocar na órbita de Vénus, efectua estudos da estrutura, composição química e dinâmica da atmosfera.

sábado, 9 de setembro de 2017

Segundo maior buraco negro conhecido está numa pequena galáxia


Uma descoberta surpresa, um gigantesco buraco negro numa pequena galáxia, leva os investigadores a colocar em causa modelos existentes sobre desenvolvimento de buracos negros.

Foi descoberto um buraco negro gigantesco, o segundo maior que agora se conhece, mas que se encontra numa pequena galáxia, a NGC 1277, com apenas um quarto da dimensão da Via Láctea.

Este buraco negro é 4000 vezes maior do que o buraco negro que se encontra no centro da nossa galáxia, o Sagittarius A, e uma massa 17 biliões de vezes maior do que a do Sol. 

Segundo os modelos existentes, os buracos negros vão evoluindo e expandindo-se em conjunto com a galáxia que os alberga. Esta descoberta acaba por surpreender os investigadores tornando difícil conciliar as teorias desenvolvidas com este caso, onde o buraco negro é tão desenvolvido para uma galáxia tão pequena. 

Fonte: Nuno Leitão/BBC

quinta-feira, 7 de setembro de 2017

ESA - Mars Express

A Mars Express é sonda não tripulada destinada a estudar o planeta Marte. Esta foi lançada a 2 de Junho de 2003. A 19 de Setembro de 2005 a ESA decidiu prorrogar a missão por mais um ano marciano (23 meses terrestres).

terça-feira, 5 de setembro de 2017

Estrela que irá ter 100 vezes a massa do Sol apanhada a nascer


Como nascem as estrelas de grande massa, aquelas que têm pelo menos dez vezes a massa do Sol? Uma equipa internacional, que inclui a astrofísica portuguesa Ana Duarte Cabral, apanhou o maior embrião de uma estrela alguma vez visto a formar-se na nossa galáxia e que já deu pistas aos cientistas sobre o assunto.

A estrela é uma das que estão a nascer na Via Láctea, dentro da Nuvem Escura de Spitzer 335.579-0.292, um grande aglomerado de poeiras e gases que não deixa passar a luz visível. A zona da nuvem escura onde esta estrela se encontra em formação é como um grande útero estelar, com 500 vezes a massa do Sol, e é aí que a estrela está a alimentar-se vorazmente enquanto cresce. No final da sua formação, deverá atingir 100 vezes a massa do Sol, o que é muito invulgar. Não se conhecem estrelas com muito mais de 100 massas solares e mesmo com mais de 50 já são raras.

Ora, para conseguir ver o interior desta nuvem escura, como se de uma ecografia se tratasse, a equipa utilizou o maior radiotelescópio da Terra, o ALMA, inaugurado no Chile em Março. Tudo porque o ALMA, da sigla em inglês de Atacama Large Millimeter/submillimeter Array, observa outro tipo de radiação, com comprimentos de onda maiores do que a luz visível, por volta do milímetro, o que permitiu observar o interior desta nuvem opaca, situada a cerca de 11.000 anos-luz de distância da Terra.

Outros telescópios espaciais, o Spitzer, da NASA, e o Herschel, da Agência Espacial Europeia, já tinham antes dado a ver que o ambiente dentro da nuvem era conturbado, com filamentos de gás escuros e densos. Mas o poder do ALMA permitiu observações mais minuciosas, quer ao nível da quantidade de poeiras quer do gás a deslocar-se dentro da nuvem, sublinha um comunicado do Observatório Europeu do Sul (ESO), organização intergovernamental de astronomia a que Portugal pertence e que é um dos parceiros do radiotelescópio.

Estas observações trazem agora novas pistas sobre a formação de estrelas de grande massa. Há duas hipóteses, explica ainda o comunicado. Uma sugere que a nuvem escura progenitora se fragmenta, criando vários núcleos pequenos de matéria, que entra em colapso sobre si própria, acabando por formar várias estrelas. A outra hipótese sugere que a nuvem inteira entrará em colapso, com o material a deslocar-se rapidamente para o centro da nuvem, criando nessa região uma ou mais estrelas de massa muito elevada.

“As observações do ALMA permitiram-nos ver pela primeira vez com todo o pormenor o que se passa no interior desta nuvem,” diz o coordenador da equipa, Nicolas Peretto, da Universidade de Cardiff, no Reino Unido. “Queríamos ver como é que estrelas monstruosas se formam e crescem, e conseguimos! Uma das fontes que encontrámos é um verdadeiro gigante – o maior núcleo proto-estelar alguma vez encontrado na Via Láctea.”

Neste núcleo, o útero da estrela embrionária, muita matéria continua a juntar-se. A gravidade fará o seu trabalho e todo esse material cairá sobre si próprio, formando uma estrela com uma quantidade de matéria invulgar. “As observações do ALMA revelam os detalhes espectaculares dos movimentos da rede de filamentos de gás e poeiras e mostram que uma enorme quantidade de gás está a deslocar-se para a região central compacta”, explica por sua vez Ana Duarte Cabral, 28 anos, actualmente no Laboratório de Astrofísica da Universidade de Bordéus, em França, como pós-doutorada.

Estas observações apoiam assim a hipótese do colapso global para a formação de estrelas de grande massa, em vez da hipótese da fragmentação, remata o comunicado.

“Embora já soubéssemos que esta região era uma boa candidata a ter uma nuvem a formar estrelas de grande massa, não esperávamos encontrar uma estrela embrionária tão grande no seu centro. De todas as estrelas da Via Láctea, apenas uma em cada dez mil atinge este tipo de massa [100 massas solares]!”, sublinha Peretto.

Com esse “tamanho”, se a colocássemos no nosso sistema solar, até onde chegaria ela? “Para já, o que observámos foi o núcleo que poderá dar origem a uma tal estrela, que neste momento ainda está em crescimento. O núcleo em si tem cerca de 10.000 unidades astronómicas, ou seja, 10 mil vezes a distância da Terra ao Sol, pelo que o tamanho deste núcleo é maior do que o sistema solar inteiro”, responde ao PÚBLICO Ana Duarte Cabral. “No entanto, quando a estrela for adulta e parar de crescer, se atingir as tais 100 massas solares, terá um raio que será cerca de 30 vezes maior que o raio do Sol. Mesmo assim, esta distância corresponde a menos do que a distância entre Mercúrio e o Sol. Seria uma estrela 30 vezes maior (em raio) do que o Sol, mas não chegaria a nenhum dos planetas.”

Mas estrelas como esta nascem, crescem e morrem depressa. “Não são apenas raras, o seu nascimento é também extremamente rápido e a sua infância muito curta. É por isso que encontrar um objecto com tanta massa numa fase tão inicial da sua evolução é um resultado espectacular”, acrescenta outro elemento da equipa, Gary Fuller, da Universidade de Manchester, no Reino Unido, que foi o orientador da tese de doutoramento de Ana Duarte Cabral.

Esta fase precoce do nascimento de uma estrela maciça demora cerca de um milhão de anos. “Uma vez adulta, penso que viverá qualquer coisa como cinco milhões de anos. Pode parecer muito para nós, mas comparado com estrelas como o Sol, que duram cerca de 9000 milhões de anos, é muito curto”, diz-nos ainda a astrofísica portuguesa. “O facto de as estrelas maciças serem raras e evoluírem tão depressa é que as torna tão difíceis de observar.”

Quando o seu fim chegar, ela tornar-se-á um buraco negro, refere Ana Duarte Cabral. “Só as estrelas maciças acabam a vida de forma tão dramática.”

Noticia retirada daqui
Related Posts Plugin for WordPress, Blogger...